Internet Market Design: from Algorithmic Game Theory to Machine Learning (Xiang Yan)

Abstract

Recent years witnessed a burst of online business such as network resource sharing, data selling, and ads auctions. These online businesses naturally fall into a multi-agent system where agents make decisions and interact with each other to achieve their own objectives, while at the same time, possibly manipulate the mechanisms designed by market makers. This talk begins with a traditional P2P resource sharing market, analyzing the potential cheating behaviors by strategic agents and showing the robustness of the market equilibrium under a proportional response mechanism. Then the incentive analysis is extended to special data markets, with machine learners being the market designers, and algorithms with incentive guarantee are provided. Finally, in the competition between multiple Internet market makers, machine learning tools are successfully adopted to deal with the latent information in such a game scenario.

Time

2020-10-14   10:00 ~ 11:00   

Speaker

Xiang Yan, Shanghai Jiao Tong University

Room

Room 602, School of Information Management & Engineering, Shanghai University of Finance & Economics