
SUFE: Algorithmic Game Theory Summer School Problem Set 2a

Due: July 28, 2017, 23:59pm Submit solutions to as many problems as you can.

Please send your solutions to nikolai@mail.shufe.edu.cn. You may submit typed in latex pdfs, or
scans/photos of your handwritten solutions.

1. Convex Zero-Sum Games: Consider the generalization of zero sum games where player 1
chooses a strategy x in some convex set S ⊆ Rd and player 2 chooses a strategy y in some convex
set T ⊆ Rd. The loss of player 1 is c(x, y) and the loss of player 2 is −c(x, y) where c(·, ·) is a
function that is convex in its first argument and concave in its second argument.

a. Show that if the game is played repeatedly and each player employs an online learning algo-
rithm with ε(T )-regret, then their average strategies constitute an O(ε(T ))-approximate Nash
equilibrium.

b. Show the general version of von-Neumman’s minimax theorem: i.e.

min
x∈S

max
y∈T

c(x, y) = max
y∈T

min
x∈S

c(x, y) (1)

2. Optimal Regret Bounds: The goal of this problem is to show that there exists no online learning
algorithm choosing between two actions, whose regret in T rounds is o(

√
T ).

Hint: You can use without proof the fact that an unbiased random walk that goes 1 step left with
probability 1/2 and 1 step right with probability 1/2 will be at distance at least

√
T/2 from the

origin with probability at least 1/2, for large enough T .

3. Follow the Perturbed Leader: Consider the experts online learning setting, where at every
iteration t the learner picks an action it from among K actions, letting [K] denote the set of
actions. The adversary picks a loss `it ∈ [0, 1], for each action i ∈ [K], and the player receives a loss
of `itt . In class, we saw that the Follow-the-Regularized-Leader algorithm, which picks an action
at time-step t drawn from a probability distribution pt ∈ ∆K chosen according to the equation:

pt = arg min
p∈∆K

t−1∑
τ=1

〈p, `it〉+
1

η
R(p), (2)

where R(·) is a 1-strongly convex function and η is an appropriately chosen constant of order
O(1/

√
T ), has expected regret O(

√
T ).

We now consider a slightly different algorithm: (i) Independently at each time-step t, the learner
draws a random vector εt = (ε1t , . . . , ε

K
t ), where each coordinate εjt is drawn independently from

a uniform distribution supported on [0, 1/η]. Let D denote the distribution of the vector εt. (ii)
After drawing εt, the learner adds this vector to the vector recording every action’s cumulative
loss until step t− 1 (inclusive), and picks the coordinate with the smallest value, i.e.:

it = arg min
i∈[K]

t−1∑
τ=1

`iτ + εit. (3)

We call this algorithm Follow-the-Perturbed-Leader.

a. Consider first the Be-the-Perturbed-Leader version of the algorithm, where the algorithm
picks:

i∗t = arg min
i∈[K]

t∑
τ=1

`iτ + εit. (4)
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Show that, for all sequences of loss vectors `1, . . . , `T , the expected regret of Be-the-Perturbed-
Leader is upper bounded by:

Eε1,...,εT

[
T∑
t=1

`
i∗t
t − min

i∈[K]

T∑
t=1

`it

]
≤ Eε∼D

[
max
i∈[K]

εi
]
. (5)

b. Show that, for all sequences of loss vectors `1, . . . , `T , the expected regret of Follow-the-
Perturbed-Leader is upper bounded by:

Eε1,...,εT

[
T∑
t=1

`itt − min
i∈[K]

T∑
t=1

`it

]
≤ Eε∼D

[
max
i∈[K]

εi
]

+

T∑
t=1

Eεt∼D [1{it 6= i∗t }] . (6)

c. Show that, for all sequences of loss vectors `1, . . . , `T , for each time-step t:

Eεt [1{it 6= i∗t }] ≤ K · η. (7)

and conclude that with an appropriately chosen η, the algorithm has regret O(
√
KT ).
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